
MATH 245 S22, Exam 2 Solutions

1. Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive
Existence Theorem
The Proof by Contradiction Theorem says that, for any propositions p, q, if p∧¬q ≡ F , then
p → q is true. The Nonconstructive Existence Theorem says that, if (∀x ∈ D, ¬P (x)) ≡ F ,
then ∃x ∈ D, P (x) is true.

2. Carefully define the following terms: Proof by Shifted Induction, Big Omega (Ω)

For some s ∈ Z and some predicate P (x) (with domain Z), to prove ∀x ∈ Z with x ≥ s, P (x)
by Shifted Induction, we must (a) prove P (s); and (b) prove ∀x ∈ Z with x ≥ s, P (x) →
P (x+1). Given two sequences an and bn, we say that an = Ω(bn) if ∃n0 ∈ N, ∃M ∈ R, ∀n ∈ N
with n ≥ n0, we have M |an| ≥ |bn|.

3. Let x ∈ R. Use cases to prove that |x− 1|+ |x + 1| ≥ x.
METHOD 1: We break into three cases, based on whether x < −1, −1 ≤ x ≤ 1, or 1 < x.
Case x < −1: |x− 1|+ |x + 1| = −(x− 1)− (x + 1) = −2x ≥ 2 > −1 > x.
Case −1 ≤ x ≤ 1: |x− 1|+ |x + 1| = −(x− 1) + (x + 1) = 2 ≥ 1 ≥ x.
Case 1 < x: |x− 1|+ |x + 1| = (x− 1) + (x + 1) = 2x > x. (the last since x + x > x + 0).

METHOD 2: We break into three cases, based on whether x < 0, 0 ≤ x ≤ 1, or 1 < x.
Case x < 0: |x− 1|+ |x + 1| ≥ 0 > x. (the first since every absolute value is ≥ 0).
Case 0 ≤ x ≤ 1: |x− 1|+ |x + 1| ≥ 0 + (x + 1) ≥ x. (the first since |x− 1| ≥ 0).
Case 1 < x: same as in method 1.

4. Prove or disprove: ∀x ∈ Z, !y ∈ Z x = y3.

The statement is true. Let x ∈ Z be arbitrary. Suppose y, z ∈ Z with x = y3 and x = z3.
Now y3 = x = z3. Taking cube roots, we get y = z. [Note that cube roots are unique in R]

5. Prove that for all n ∈ N, we must have
∑n

i=0(2i− 1) = n2 − 1.

Proof by vanilla induction.
Base case is n = 1:

∑1
i=0(2i− 1) = (2× 0− 1) + (2× 1− 1) = 0, while 12 − 1 = 0.

Now, let n ∈ N be arbitrary, and assume that
∑n

i=0(2i − 1) = n2 − 1. Adding 2n + 1
to both sides, we get 2n + 1 +

∑n
i=0(2i − 1) = n2 − 1 + 2n + 1. We simplify to get∑n+1

i=0 (2i− 1) = (n + 1)2 − 1.

6. Use (some form of) induction to prove that for n ≥ 1, all Fibonacci numbers Fn are positive.
The proof must use strong induction, and needs two base cases.
Base case n = 1, F1 = 1 > 0. Base case n = 2, F2 = F1 + F0 = 1 + 0 = 1 > 0.
Now, let n ∈ N with n ≥ 3 be arbitrary, and assume that Fn−1 and Fn−2 are both positive.
We have Fn = Fn−1 + Fn−2, and the sum of two positive numbers is positive.

7. Solve the recurrence with initial conditions a0 = 3, a1 = −1 and relation an = an−1 + 6an−2

(for n ≥ 2).

This relation has characteristic polynomial r2 − r − 6 = (r − 3)(r + 2). We have two dis-
tinct roots, so the general solution is an = A3n + B(−2)n. Our initial conditions give
3 = a0 = A30 + B(−2)0 = A + B, and −1 = a1 = A31 + B(−2)1 = 3A − 2B. The sys-
tem of equations {3 = A + B,−1 = 3A − 2B} has unique solution A = 1, B = 2, so our
recurrence has specific solution an = 3n + 2(−2)n.



8. Let an = n1.9 + n2.1. Prove or disprove that an = O(n2).

The statement is false. Let n0 ∈ N and M ∈ R be arbitrary. Set n = max(n0, dM10e + 1).
This choice of n guarantees that n ≥ n0 and that n > M10. Taking the tenth root, we get
n0.1 > M . Multiplying by n2, we get n2.1 > Mn2. Now, we have |an| = |n1.9 + n2.1| =
n1.9 + n2.1 > n2.1 > Mn2 = M |bn|.

9. Prove that for all x ∈ R with x ≥ 0, we must have bxc2 ≤ bx2c.
Let x ∈ R with x ≥ 0. By definition of floor, bxc ≤ x. By Theorem 5.18 in the book,
bxc ≥ b0c = 0. We multiply both sides by x ≥ 0 to get bxcx ≤ x2, and by bxc ≥ 0 to get
bxc2 ≤ bxcx. Combining, we get bxc2 ≤ x2. We now apply Theorem 5.18 from the book
to get bbxc2c ≤ bx2c. Lastly, since bxc2 ∈ Z, we apply Theorem 5.19 from the book to get
bbxc2c = bxc2 + b0c = bxc2. Putting it all together, we get bxc2 ≤ bx2c.

10. Consider the recurrence with initial conditions T0 = 0, T1 = 0, T2 = 1 and relation Tn =
Tn−1 + Tn−2 + Tn−3 (for n ≥ 3). Prove that, for all n ∈ N0, we have Tn < 2n.
DO NOT TRY TO SOLVE THE RECURRENCE.
This question is similar to Thm 6.13. The proof must use strong induction, and needs three
base cases: Base case n = 0, T0 = 0 < 1 = 20. Base case n = 1, T1 = 0 < 2 = 21. Base case
n = 2, T2 = 1 < 4 = 22.

Now, let n ∈ N with n ≥ 3, and assume that Tn−1 < 2n−1, Tn−2 < 2n−2, and Tn−3 < 2n−3.
We have Tn = Tn−1 + Tn−2 + Tn−3 < 2n−1 + 2n−2 + 2n−3 < 2n−1 + 2n−2 + 2n−3 + 2n−3 =
2n−1 + 2n−2 + 2n−2 = 2n−1 + 2n−1 = 2n.

NOTE: These are called “Tribonacci numbers”. To solve the recurrence, one would need to
find the nasty-ass roots of the characteristic polynomial r3 − r2 − r − 1 (which can be done,
with some advanced methods).


