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MATH 245 S22, Exam 2 Solutions

Carefully state the following theorems: Proof by Contradiction Theorem, Nonconstructive

Existence Theorem
The Proof by Contradiction Theorem says that, for any propositions p, q, if p A g = F, then

p — q is true. The Nonconstructive Existence Theorem says that, if (Vo € D, =P(z)) = F,
then 3x € D, P(z) is true.

Carefully define the following terms: Proof by Shifted Induction, Big Omega (12)

For some s € Z and some predicate P(z) (with domain Z), to prove Vx € Z with z > s, P(x)
by Shifted Induction, we must (a) prove P(s); and (b) prove Vx € Z with = > s, P(z) —
P(z+1). Given two sequences a,, and by,, we say that a,, = Q(b,) if Ing € N, IM € R, Vvn € N
with n > ng, we have Mla,| > |by]|.

Let = € R. Use cases to prove that |[x — 1| + |z + 1| > z.

METHOD 1: We break into three cases, based on whether x < —1, -1 <z <1,or 1 < z.
Casex < —1: |z —1|+|jz+1ll=—(@-1)—(z+1)=-22>2>—-1>uz.

Case —1<z<lijz—1l+|z+]l=—(—-1)+(z+1)=2>1>=zx.

Case l <uz: jz—1|+|z+1]=(x—1)+ (x + 1) =2z > x. (the last since x + = > = + 0).

METHOD 2: We break into three cases, based on whether x < 0,0 <z <1,o0r 1 < z.
Case © < 0: |z — 1|+ |z + 1| > 0 > z. (the first since every absolute value is > 0).
Case 0 <z <1: |z —1|+|z+1 >0+ (x+1) > z. (the first since | — 1| > 0).

Case 1 < x: same as in method 1.

Prove or disprove: Vo € Z, ly € Z x = y>.
The statement is true. Let 2 € Z be arbitrary. Suppose v,z € Z with z = 3 and = = 23.

Now y3 = x = 23. Taking cube roots, we get y = z. [Note that cube roots are unique in R]

Prove that for all n € N, we must have 1 (2i — 1) =n? — 1.

Proof by vanilla induction.

Base caseisn=1: Y, (20 —1) = (2x 0 — 1)+ (2x 1 —1) = 0, while 1> — 1 = 0.

Now, let n € N be arbitrary, and assume that > ,(2i — 1) = n? — 1. Adding 2n + 1
to both sides, we get 2n + 14+ Y% (20 — 1) = n?> — 1+ 2n + 1. We simplify to get
S (20— 1) = (n+ 1) — 1.

Use (some form of) induction to prove that for n > 1, all Fibonacci numbers F), are positive.
The proof must use strong induction, and needs two base cases.

Basecasen=1,F; =1>0. Basecasen=2, Ihb =+ Fyp=14+0=1>0.

Now, let n € N with n > 3 be arbitrary, and assume that F,,_; and Fj,_o are both positive.
We have F,, = F,,_1 + F,,_2, and the sum of two positive numbers is positive.

Solve the recurrence with initial conditions ag = 3, a; = —1 and relation a,, = a,_1 + 6a,_9
(for n > 2).

This relation has characteristic polynomial 72 —r — 6 = (r — 3)(r + 2). We have two dis-
tinct roots, so the general solution is a, = A3" 4+ B(—2)". Our initial conditions give
3=uag= A3+ B(-2)° = A+ B, and -1 = a; = A3' + B(—2)! = 34 — 2B. The sys-
tem of equations {3 = A+ B,—1 = 3A — 2B} has unique solution A = 1, B = 2, so our
recurrence has specific solution a, = 3" + 2(—-2)".
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Let a, = n*? + n%!. Prove or disprove that a, = O(n?).

The statement is false. Let ng € N and M € R be arbitrary. Set n = max(ng, [M1°] + 1).
This choice of n guarantees that n > ng and that n > M. Taking the tenth root, we get
n®!l > M. Multiplying by n?, we get n*>! > Mn? Now, we have |a,| = |[n!? + n?!| =
Y +n2l > n2l > Mn? = M|b,|.

Prove that for all # € R with x > 0, we must have |x|? < |22].

Let z € R with > 0. By definition of floor, |z] < z. By Theorem 5.18 in the book,
|z] > |0] = 0. We multiply both sides by > 0 to get |z|z < 22, and by x| > 0 to get
|z|? < |x|z. Combining, we get |z]|? < x2. We now apply Theorem 5.18 from the book
to get ||z]?] < |2?%]. Lastly, since |z|? € Z, we apply Theorem 5.19 from the book to get
||z)?] = |z|?+ |0] = |=]?. Putting it all together, we get |x|? < |2?].

Consider the recurrence with initial conditions 17y = 0, 73 = 0, 75 = 1 and relation T,
Th-1+Th—2+ T,—3 (for n > 3). Prove that, for all n € Ny, we have T,, < 2".

DO NOT TRY TO SOLVE THE RECURRENCE.

This question is similar to Thm 6.13. The proof must use strong induction, and needs three

base cases: Base case n =0, Ty =0<1=2% Basecasen=1,T; =0 < 2 = 2'. Base case
n=2"T=1<4=22

Now, let n € N with n > 3, and assume that Tj,_1 < 2"!, T,,_o < 2" 2 and T),_3 < 2" 3.
We have T}, = T)y_1 + Tp—o + T—g < 271 42772 f on=3  gn—1 4 on=2 4 on=3 4 gn=3 _
2n—1 4 2n—2 4 2n—2 — 2n—1 4 2n—1 — 9N

NOTE: These are called “Tribonacci numbers”. To solve the recurrence, one would need to
find the nasty-ass roots of the characteristic polynomial 73 — 72 — r — 1 (which can be done,
with some advanced methods).



